English

If x = esin3t, y = ecos3t, then show that dydxdydx=-ylogxxlogy. - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.

Sum

Solution

x = esin3t, y = ecos3t 
∴ log x = logesin3t, logy = logecos3t
∴ log x = (sin 3t)(log e), log y = (cos 3t)(log e)
∴ log x = sin 3t, log y = cos 3t ...(1) ... [∵ log e = 1]
Differentiating both sides w.r.t. t, we get
`(1)/x.dx/dt = d/dt(sin3t) = cos3t.d/dt(3t)`
= cos 3t x 3

= 3 cos 3t
and
`(1)/y.dy/dt = d/dt(cos 3t) = -sin3t.d/dx(3t)`
= – sin 3t x 3

= – 3 sin 3t
∴ `dx/dt = 3x cos 3t and dy/dt"= -3y sin 3t`

∴ `dy/dx = ((dy/dt))/((dx/dt)`

= `(-3y sin 3t)/(3x cos 3t)`

= `(-y sin 3t)/(x cos 3t)`

= `(-y log x)/(x log y)`.                     ...[By (1)]

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.4 [Page 48]

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `(d^2y)/(dx^2)` , if y = log x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Find the second order derivatives of the following : log(logx)


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`d/dx(x^{sinx})` = ______ 


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`8^x/x^8`


`log [log(logx^5)]`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×