Advertisements
Advertisements
Question
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Solution
Given, f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)
Taking logarithm of both sides,
log f (x) = log [(1 + x) (1 + x2) (1 + x4) (1 + x8)]
or log f(x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8) ...[∵ log mn = log m + log n]
Differentiating both sides with respect to x,
`1/(f (x)) d/dx f (x) = 1/(1 + x) d/dx (1 + x) + 1/(1 + x^2) d/dx (1 + x^2) + 1/(1 + x^4) d/dx (1 + x^4) + 1/(1 + x^8) d/dx (1 + x^8)`
or `f' (x) = 1/(1 + x) + (2x)/(1 + x^2) + (4x)/(1 + x^4) + (8x)/(1 + x^8)`
or `f' (x) = f (x) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`
`= (1 + x) (1 + x^2) + (1 + x^4)(1 + x^8) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`
Putting x = 1,
f'(1) = (1 + 1) · (1 + 1) · (1 + 1) (1 + 1) `xx [1/(1 + 1) + 2/(1 + 1) + 3/(1 + 1) + 4/(1 + 1)]`
`= 2 xx 2 xx 2xx 2 xx [1/2 + 2/2 + 4/2 + 8/2]`
`= (2 xx 2 xx 2xx 2)/2 [1 + 2 + 4 + 8]`
`= 8 xx 15`
= 120
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `dy/dx` if y = xx + 5x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`