English

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).

Sum

Solution

Given, f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)

Taking logarithm of both sides,

log f (x) = log [(1 + x) (1 + x2) (1 + x4) (1 + x8)]

or log f(x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8)             ...[∵ log mn = log m + log n]

Differentiating both sides with respect to x,

`1/(f (x)) d/dx  f (x) = 1/(1 + x) d/dx (1 + x) + 1/(1 + x^2) d/dx (1 + x^2) + 1/(1 + x^4) d/dx (1 + x^4) + 1/(1 + x^8) d/dx (1 + x^8)`

or `f' (x) = 1/(1 + x) + (2x)/(1 + x^2) + (4x)/(1 + x^4) + (8x)/(1 + x^8)`

or `f' (x) =  f (x) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

`= (1 + x) (1 + x^2) + (1 + x^4)(1 + x^8) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

Putting x = 1,

f'(1) = (1 + 1) · (1 + 1) · (1 + 1) (1 + 1) `xx [1/(1 + 1) + 2/(1 + 1) + 3/(1 + 1) + 4/(1 + 1)]`

`= 2 xx 2 xx 2xx 2 xx [1/2 + 2/2 + 4/2 + 8/2]`

`= (2 xx 2 xx 2xx 2)/2 [1 + 2 + 4 + 8]`

`= 8 xx 15`

= 120

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 16 | Page 178

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


Find `dy/dx` if y = x+ 5x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`d/dx(x^{sinx})` = ______ 


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


`8^x/x^8`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×