Advertisements
Advertisements
Question
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Solution
Given, (cos x)y = (cos y)x
Taking logarithm of both sides,
log (cos x)y = log (cos y)x Or y log cos x = x log cos y
Differentiating both sides with respect to x,
`=> y d/dx log cos x + log cos x d/dx (y)`
`= x d/dx log cos y + log cos y d/dx (x)`
`=> y. 1/(cos x) d/dx cos x + log cos x.dy/dx`
`= x. 1/(cos y) d/dx cos y + log cos y xx 1`
`=> y. 1/(cos x) (- sin x) + log cos x. dy/dx = x 1/(cos y) (-sin y) dy/dx + log cos y`
Or` -y tan x + log cos x dy/dx = - x tan y dy/dx + log cos y`
Or `log cos x dy/dx + x tan y dy/dx = log cos y + y tan x`
Or `dy/dx (log cos x + x tan y) = log cos y + y tan x`
`therefore dy/dx = (log cos y + y tan x)/ (log cos x + x tan y)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of x2x w.r.t. x is ______.