English

Find dydx for the function given in the question: (cos x)y = (cos y)x - Mathematics

Advertisements
Advertisements

Question

Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x

Sum

Solution

Given, (cos x)y = (cos y)x

Taking logarithm of both sides,

log (cos x)y = log (cos y)x Or y log cos x = x log cos y

Differentiating both sides with respect to x,

`=> y d/dx  log cos x + log cos x  d/dx  (y)`

`= x d/dx  log cos y + log cos y d/dx  (x)`

`=> y. 1/(cos x) d/dx  cos x + log cos x.dy/dx`

`= x. 1/(cos y) d/dx  cos y + log cos y xx 1`

`=> y. 1/(cos x) (- sin x) + log cos x. dy/dx = x 1/(cos y) (-sin y) dy/dx + log cos y`

Or` -y tan x + log cos x dy/dx = - x tan y  dy/dx + log cos y`

Or `log cos x  dy/dx + x tan y dy/dx = log cos y + y tan x`

Or `dy/dx (log cos x + x tan y) = log cos y + y tan x`

`therefore dy/dx = (log cos y + y tan x)/ (log cos x + x tan y)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 14 | Page 178

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(d^2y)/(dx^2)` , if y = log x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : log(logx)


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`d/dx(x^{sinx})` = ______ 


Derivative of `log_6`x with respect 6x to is ______


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


The derivative of x2x w.r.t. x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×