English

If xm . yn = (x + y)m+n, prove that dydxdydx=yx - Mathematics

Advertisements
Advertisements

Question

If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`

Sum

Solution

Given that: xm . yn = (x + y)m+n 

Taking log on both sides

log xm . yn = log (x + y)m+n   ......[∵ log xy = log x + log y]

⇒ log xm + log yn = (m + n) log (x + y)

⇒ m log x + n log y = (m + n) log (x + y)

Differentiating both sides w.r.t. x

⇒ `"m" * "d"/"dx" log x + "n" * "d"/"dx" log y = ("m" + "n") "d"/"dx" log (x + y)`

⇒ `"m" * 1/x + "n" * 1/y * "dy"/"dx" = ("m" + "n") * 1/(x + y) (1 + "dy"/"dx")`

⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) * (1 + "dy"/"dx")`

⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) + ("m" + "n")/(x + y) * "dy"/"dx"`

⇒ `"n"/y * "dy"/"dx" - ("m" + "n")/(x + y) * "dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`

⇒ `("n"/y - ("m" + "n")/(x + y))"dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`

⇒ `(("n"x + "n"y - "m"y - "n"y)/(y(x + y)))"dy"/"dx" = (("m"x + "n"x - "m"x - "m"y)/(x(x + y)))`

⇒ `(("n"x - "m"y)/(y(x + y))) "dy"/"dx" = (("n"x- "m"y)/(x(x + y)))`

⇒ `"dy"/"dx" = ("n"x - "m"y)/(x(x + y)) xx (y(x + y))/("n"x - "m"y)`

⇒ `"dy"/"dx" = y/x`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 113]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 80. (i) | Page 113

RELATED QUESTIONS

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


Evaluate 
`int  1/(16 - 9x^2) dx`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`log (x + sqrt(x^2 + "a"))`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


The derivative of x2x w.r.t. x is ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


The derivative of log x with respect to `1/x` is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×