English

Find dydx for the function given in the question: xy=e(x–y) - Mathematics

Advertisements
Advertisements

Question

Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`

Sum

Solution

Given, xy = e(x-y)

Taking logarithm of both the sides,

log (xy) = log e(x-y)

or log x + log y = (x - y) loge e         .... [∵ log xy = log x + log y]

or log x + log y = x - y           ...[∵ loge = 1]

Differentiating both sides with respect to x,

`d/dx  log x +d/dx  log y = d/dx (x) - d/dx (y)`

or `1/x + 1/y dy/dx = 1 - dy/dx `

or`1/y dy/dx  + dy/dx  = 1 - 1/x`

or  `dy/dx ((1 + y)/y) = 1 - 1/x = (x - 1)/x`

or `((1 + y)/y) dy/dx  = (x - 1)/x`

`therefore dy/dx  = (y (x - 1))/(x (1 + y))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 15 | Page 178

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`2^(cos^(2_x)`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


The derivative of log x with respect to `1/x` is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×