Advertisements
Advertisements
Question
Find the nth derivative of the following : log (2x + 3)
Solution
Let y = log (2x + 3)
Then `"dy"/"dx" = "d"/"dx"[log(2x + 3)]`
= `(1)/(2x + 3)."d"/"dx"(2x + 3)`
= `(1)/(2x + 3) xx (a xx 1 + 0)`
= `a/"2x + 3"`
`(d^2y)/(dx^2) = "d"/"dx"(a/(2x + 3))`
= `a"d"/"dx"(2x + 3)^-1`
= `a(-1)(2x + 3)^-2."d"/"dx"(2x + 3)`
= `((-1)a)/((2x + 3)^2) xx (a xx 1 + 0)`
= `((-1)a)/((2x + 3)^2)`
`(d^3y)/(dx^3) = "d"/"dx"[((-1)^1a^2)/(2x + 3)^2]`
= `(-1)^1a^2."d"/"dx"(2x + 3)^-2`
= `(-1)^1a^2.(-2)(2x + 3)^-3."d"/"dx"(2x + 3)`
= `((-1)^2. 1.2.a^2)/(2x + 3)^3 xx (a xx 1 + 0)`
= `((-1)_^2.2! a^3)/(2x + 3)^3`
In general, the nth order derivative is given by
`(d^ny)/(dx^2) = ((-1)^(n - 1).(n - 1)!2^n)/(2x + 3)^n`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the second order derivatives of the following : log(logx)
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
Derivative of `log_6`x with respect 6x to is ______
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.