Advertisements
Advertisements
प्रश्न
Find the nth derivative of the following : log (2x + 3)
उत्तर
Let y = log (2x + 3)
Then `"dy"/"dx" = "d"/"dx"[log(2x + 3)]`
= `(1)/(2x + 3)."d"/"dx"(2x + 3)`
= `(1)/(2x + 3) xx (a xx 1 + 0)`
= `a/"2x + 3"`
`(d^2y)/(dx^2) = "d"/"dx"(a/(2x + 3))`
= `a"d"/"dx"(2x + 3)^-1`
= `a(-1)(2x + 3)^-2."d"/"dx"(2x + 3)`
= `((-1)a)/((2x + 3)^2) xx (a xx 1 + 0)`
= `((-1)a)/((2x + 3)^2)`
`(d^3y)/(dx^3) = "d"/"dx"[((-1)^1a^2)/(2x + 3)^2]`
= `(-1)^1a^2."d"/"dx"(2x + 3)^-2`
= `(-1)^1a^2.(-2)(2x + 3)^-3."d"/"dx"(2x + 3)`
= `((-1)^2. 1.2.a^2)/(2x + 3)^3 xx (a xx 1 + 0)`
= `((-1)_^2.2! a^3)/(2x + 3)^3`
In general, the nth order derivative is given by
`(d^ny)/(dx^2) = ((-1)^(n - 1).(n - 1)!2^n)/(2x + 3)^n`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
If xy = yx, then find `dy/dx`