Advertisements
Advertisements
प्रश्न
The derivative of x2x w.r.t. x is ______.
विकल्प
x2x – 1
2x2x log x
2x2x (1 + log x)
2x2x (1 – log x)
उत्तर
The derivative of x2x w.r.t. x is 2x2x (1 + log x).
Explanation:
Let y = x2x
log y = 2x log x ...(Taking log on both sides)
Differentiating w.r.t. x,
`1/y dy/dx` = 2[1 + log x]
`\implies dy/dx` = 2x2x [1 + log x]
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`2^(cos^(2_x)`
`log [log(logx^5)]`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.