मराठी

The derivative of x2x w.r.t. x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The derivative of x2x w.r.t. x is ______.

पर्याय

  • x2x – 1

  • 2x2x log x

  • 2x2x (1 + log x)

  • 2x2x (1 – log x)

MCQ
रिकाम्या जागा भरा

उत्तर

The derivative of x2x w.r.t. x is 2x2x (1 + log x).

Explanation:

Let y = x2x

log y = 2x log x  ...(Taking log on both sides)

Differentiating w.r.t. x,

`1/y dy/dx` = 2[1 + log x]

`\implies dy/dx` = 2x2x [1 + log x]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Find the second order derivatives of the following : x3.logx


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


Find the nth derivative of the following : log (ax + b)


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`8^x/x^8`


`log [log(logx^5)]`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×