मराठी

If α|α34121141| = 0, then the value of α is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.

पर्याय

  • 1

  • 2

  • 3

  • 4

MCQ
रिकाम्या जागा भरा

उत्तर

If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is 4.

Explanation:

If two rows/columns are identical in any determinant, the value becomes zero.

In given determinant on comparing C1 and C3.

We conclude α = 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्‍न

Using the property of determinants and without expanding, prove that:

`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`


By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


By using properties of determinants, show that:

`|(x+y+2z, x, y),(z, y+z+2z,y),(z,x,z+x+2y)| = 2(x+y+z)^3`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.


Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.


Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Using properties of determinant show that

`|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Answer the following question:

By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


Which of the following is correct?


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Without expanding evaluate the following determinant.

`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×