मराठी

Without expanding determinants, prove that |1yzy+z1zxz+x1xyx+y|=|1xx21yy21zz2|. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.

बेरीज

उत्तर

L.H.S. = `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)|`

= `|(1, yz, x + y + z - x),(1, zx, y + z + x - y),(1, xy, z + x + y - z)|`

= `|(1, yz, x + y + z),(1, zx, x + y + z),(1, xy, x + y + z)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `x + y + z |(1, yz, 1),(1, zx, 1),(1, xy, 1)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `(x + y + z)0 - |(1, yz, x),(1, zx, y),(1, xy, z)|`

=  `0 -|(1/x xx x, 1/x xx yz, 1/x xx x xx x),(1/yxxy, 1/yxxyxxzx, 1/yxxyxxy),(1/zxxz, 1/zxxzxx xy, 1/zxxzxxz)|` 

Taking `1/x, 1/y and 1/z` from R1, R2 & R3.

 `-1/(xyz)|(x, xyz, x^2),(y, xyz, y^2),(z, xyz, z^2)|`

Taking xyz from C2

`-(xyz)/(xyz)|(x, 1, x^2),(y, 1, y^2),(z, 1, z^2)|=-|(x,1,x^2),(y,1,y^2),(z,1,z^2)|`

C1 ↔ C2

= `|(1,x,x^2),(1,y,y^2),(1,z,z^2)|`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - EXERCISE 6.2 [पृष्ठ ८९]

APPEARS IN

संबंधित प्रश्‍न

By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


By using properties of determinants, show that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`


Using properties of determinants, prove that

`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`


 Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


Without expanding determinants, prove that `|("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| = |("b"_1, "c"_1, "a"_1),("b"_2, "c"_2, "a"_2),("b"_3, "c"_3, "a"_3)| = |("c"_1, "a"_1, "b"_1),("c"_2, "a"_2, "b"_2),("c"_3, "a"_3, "b"_3)|` 


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Answer the following question:

If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1


Evaluate: `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.


A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:


Which of the following is correct?


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


By using properties of determinants, prove that 

`|(x+y, y+z, z+x),(z, x, y),(1, 1, 1)|` = 0 


Without expanding evaluate the following determinant.

`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×