English

Without expanding determinants, prove that |1yzy+z1zxz+x1xyx+y|=|1xx21yy21zz2|. - Mathematics and Statistics

Advertisements
Advertisements

Question

Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.

Sum

Solution

L.H.S. = `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)|`

= `|(1, yz, x + y + z - x),(1, zx, y + z + x - y),(1, xy, z + x + y - z)|`

= `|(1, yz, x + y + z),(1, zx, x + y + z),(1, xy, x + y + z)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `x + y + z |(1, yz, 1),(1, zx, 1),(1, xy, 1)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `(x + y + z)0 - |(1, yz, x),(1, zx, y),(1, xy, z)|`

=  `0 -|(1/x xx x, 1/x xx yz, 1/x xx x xx x),(1/yxxy, 1/yxxyxxzx, 1/yxxyxxy),(1/zxxz, 1/zxxzxx xy, 1/zxxzxxz)|` 

Taking `1/x, 1/y and 1/z` from R1, R2 & R3.

 `-1/(xyz)|(x, xyz, x^2),(y, xyz, y^2),(z, xyz, z^2)|`

Taking xyz from C2

`-(xyz)/(xyz)|(x, 1, x^2),(y, 1, y^2),(z, 1, z^2)|=-|(x,1,x^2),(y,1,y^2),(z,1,z^2)|`

C1 ↔ C2

= `|(1,x,x^2),(1,y,y^2),(1,z,z^2)|`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - EXERCISE 6.2 [Page 89]

APPEARS IN

RELATED QUESTIONS

Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0​`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`


Using properties of determinants, prove that

`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`


Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`


Prove the following using properties of determinants :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

If x = –9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 has other two roots are


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×