Advertisements
Advertisements
Question
Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.
Solution
L.H.S. = `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)|`
= `|(1, yz, x + y + z - x),(1, zx, y + z + x - y),(1, xy, z + x + y - z)|`
= `|(1, yz, x + y + z),(1, zx, x + y + z),(1, xy, x + y + z)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`
= `x + y + z |(1, yz, 1),(1, zx, 1),(1, xy, 1)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`
= `(x + y + z)0 - |(1, yz, x),(1, zx, y),(1, xy, z)|`
= `0 -|(1/x xx x, 1/x xx yz, 1/x xx x xx x),(1/yxxy, 1/yxxyxxzx, 1/yxxyxxy),(1/zxxz, 1/zxxzxx xy, 1/zxxzxxz)|`
Taking `1/x, 1/y and 1/z` from R1, R2 & R3.
`-1/(xyz)|(x, xyz, x^2),(y, xyz, y^2),(z, xyz, z^2)|`
Taking xyz from C2
`-(xyz)/(xyz)|(x, 1, x^2),(y, 1, y^2),(z, 1, z^2)|=-|(x,1,x^2),(y,1,y^2),(z,1,z^2)|`
C1 ↔ C2
= `|(1,x,x^2),(1,y,y^2),(1,z,z^2)|`
APPEARS IN
RELATED QUESTIONS
Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0`
By using properties of determinants, show that:
`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)
By using properties of determinants, show that:
`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`
Using properties of determinants, prove that
`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`
Using properties of determinants, prove that:
`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`
Prove the following using properties of determinants :
\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]
Using properties of determinants, prove the following:
Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .
Select the correct option from the given alternatives:
Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then
Select the correct option from the given alternatives:
If x = –9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 has other two roots are
Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.
The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.
In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.
Let a, b, c be such that b(a + c) ≠ 0 if
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.
If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
By using properties of determinant prove that
`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`