हिंदी

Without expanding determinants, prove that |1yzy+z1zxz+x1xyx+y|=|1xx21yy21zz2|. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.

योग

उत्तर

L.H.S. = `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)|`

= `|(1, yz, x + y + z - x),(1, zx, y + z + x - y),(1, xy, z + x + y - z)|`

= `|(1, yz, x + y + z),(1, zx, x + y + z),(1, xy, x + y + z)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `x + y + z |(1, yz, 1),(1, zx, 1),(1, xy, 1)| - |(1, yz, x),(1, zx, y),(1, xy, z)|`

= `(x + y + z)0 - |(1, yz, x),(1, zx, y),(1, xy, z)|`

=  `0 -|(1/x xx x, 1/x xx yz, 1/x xx x xx x),(1/yxxy, 1/yxxyxxzx, 1/yxxyxxy),(1/zxxz, 1/zxxzxx xy, 1/zxxzxxz)|` 

Taking `1/x, 1/y and 1/z` from R1, R2 & R3.

 `-1/(xyz)|(x, xyz, x^2),(y, xyz, y^2),(z, xyz, z^2)|`

Taking xyz from C2

`-(xyz)/(xyz)|(x, 1, x^2),(y, 1, y^2),(z, 1, z^2)|=-|(x,1,x^2),(y,1,y^2),(z,1,z^2)|`

C1 ↔ C2

= `|(1,x,x^2),(1,y,y^2),(1,z,z^2)|`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - EXERCISE 6.2 [पृष्ठ ८९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 6 Determinants
EXERCISE 6.2 | Q 7) ii) | पृष्ठ ८९

संबंधित प्रश्न

By using properties of determinants, show that:

`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.


Without expanding determinants, prove that `|("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| = |("b"_1, "c"_1, "a"_1),("b"_2, "c"_2, "a"_2),("b"_3, "c"_3, "a"_3)| = |("c"_1, "a"_1, "b"_1),("c"_2, "a"_2, "b"_2),("c"_3, "a"_3, "b"_3)|` 


Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0


Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Prove that: `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.


If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×