मराठी

By using properties of determinants, prove that |x+yy+zz+xzxy111| = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.

बेरीज

उत्तर

L.H.S. = `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` 

Applying R1 → R1 + R2, we get

L.H.S. = `|(x + y + z, x + y + z, x + y + z),(z, x , y),(1, 1, 1)|`

Taking (x + y + z) common from R1, we get

L.H.S. = `(x + y + z)|(1, 1, 1),(z, x, y),(1, 1, 1)|`

= (x + y + z) (0)          …[∵ R1 and R3 are identical]
= 0
= R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - MISCELLANEOUS EXERCISE - 6 [पृष्ठ ९५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 6 Determinants
MISCELLANEOUS EXERCISE - 6 | Q 3) | पृष्ठ ९५

संबंधित प्रश्‍न

Using the properties of determinants, prove the following:

`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`


By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(x+y+2z, x, y),(z, y+z+2z,y),(z,x,z+x+2y)| = 2(x+y+z)^3`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


Using properties of determinants, prove that

`|[b+c , a ,a  ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc 


Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.


The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4  x ≤ pi/4` is ______.


If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are ______.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.


If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Without expanding determinants, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×