मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following determinants: |x-1xx-20x-2x-300x-3|=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`

Solve the following equation:

`|(x -1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)|` = 0

बेरीज

उत्तर १

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`

∴ `(x - 1) |(x - 2, x - 3),(0, x - 3)| - x|(0, x - 3),(0, x - 3)| + (x - 2)|(0, x - 2),(0, 0)|` = 0

∴ (x - 1)[(x - 2)(x - 3) - 0] - x(0 - 0) + (x - 2)(0 - 0) = 0

∴ (x - 1)(x - 2)(x - 3) = 0

∴ x - 1 = 0 or x - 2 = 0 or x - 3 = 0

∴ x = 1 or x = 2 or x = 3

shaalaa.com

उत्तर २

`|(x -1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)|` = 0

Applying R2 → R2 – R3, we get

`|(x -1, x, x - 2),(0, x - 2, 0),(0, 0, x - 3)|` = 0

∴ (x – 1)[(x – 2)(x – 3) – 0] – x(0 – 0) + (x – 2)(0 – 0) = 0

∴ (x – 1)(x – 2)(x – 3) = 0

∴ x – 1 = 0 or x – 2 = 0 or x – 3 = 0

∴ x = 1 or x = 2 or x = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Exercise 4.2 [पृष्ठ ६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Exercise 4.2 | Q 4. (ii) | पृष्ठ ६८

संबंधित प्रश्‍न

Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`


Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0​`


Using the property of determinants and without expanding, prove that:

`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`


By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(x+4,2x,2x),(2x,x+4,2x),(2x , 2x, x+4)| = (5x + 4)(4-x)^2`


By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


By using properties of determinants, show that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`


Using properties of determinants, prove that:

`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| =  1`                 


Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`


Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`


Prove the following using properties of determinants :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.


Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Using properties of determinant show that

`|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Answer the following question:

Without expanding determinant show that

`|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Answer the following question:

If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1


Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0


The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.


The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


`abs(("x", -7),("x", 5"x" + 1))`


In a third order matrix B, bij denotes the element in the ith row and jth column. If

bij = 0 for i = j

= 1 for > j

= – 1 for i < j

Then the matrix is


Which of the following is correct?


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


Evaluate the following determinant without expanding:

`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?


Without expanding determinant find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×