मराठी

Without expanding determinants, show that |1366143712|+|233212176|=10|121317326| - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

बेरीज

उत्तर

L.H.S. = `|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4 |(2, 3, 3),(2, 1, 2),(1, 7, 6)|`

In 1st determinant, taking 2 common from C3, we get

L.H.S. = `2|(1,3,3),(6,1,2),(3,7,6)| + 4|(2,3,3),(2,1,2),(1,7,6)|`

= `|(2, 3, 3),(12, 1, 2),(6, 7, 6)| + |(8, 3, 3),(8, 1, 2),(4, 7, 6)|`

= `|(2 + 8, 3, 3),(12 + 8, 1, 2),(6 + 4, 7, 6)|`

= `|(10, 3, 3),(20, 1, 2),(10, 7, 6)|`

Interchanging rows and columns, we get

L.H.S. = `|(10, 20, 10),(3, 1, 7),(3, 2, 6)|`

Taking 10 common from R1, we get

L.H.S. = `10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

= R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - EXERCISE 6.2 [पृष्ठ ८९]

APPEARS IN

संबंधित प्रश्‍न

 

Using properties of determinants, prove that 

`|[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|`

 

Using the property of determinants and without expanding, prove that:

`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`


Using the property of determinants and without expanding, prove that:

`|(2,7,65),(3,8,75),(5,9,86)| = 0`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.


A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is


The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×