English

Without expanding determinants, show that |1366143712|+|233212176|=10|121317326| - Mathematics and Statistics

Advertisements
Advertisements

Question

Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

Sum

Solution

L.H.S. = `|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4 |(2, 3, 3),(2, 1, 2),(1, 7, 6)|`

In 1st determinant, taking 2 common from C3, we get

L.H.S. = `2|(1,3,3),(6,1,2),(3,7,6)| + 4|(2,3,3),(2,1,2),(1,7,6)|`

= `|(2, 3, 3),(12, 1, 2),(6, 7, 6)| + |(8, 3, 3),(8, 1, 2),(4, 7, 6)|`

= `|(2 + 8, 3, 3),(12 + 8, 1, 2),(6 + 4, 7, 6)|`

= `|(10, 3, 3),(20, 1, 2),(10, 7, 6)|`

Interchanging rows and columns, we get

L.H.S. = `|(10, 20, 10),(3, 1, 7),(3, 2, 6)|`

Taking 10 common from R1, we get

L.H.S. = `10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - EXERCISE 6.2 [Page 89]

RELATED QUESTIONS

Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`


Using properties of determinants, prove that

`|[b+c , a ,a  ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc 


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0


Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0


Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" +  "b", "ab", "a"^2"b"^2)|` = 0


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.


The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinant find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×