English

Abc|x+1x+2x+ax+2x+3x+bx+3x+4x+c| = 0, where a, b, c are in A.P. - Mathematics

Advertisements
Advertisements

Question

`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

Let Δ = `|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|`

R2 → 2R2 – (R1 + R3)

= `|(x + 1, x + 2, x + "a"),(0, 0, 2"b" - ("a" + "c")),(x + 3, x + 4, x + "c")|`

a, b, c are in A.P.

∴ b – a = c – b

⇒ 2b = a + c

= `|(x + 1, x + 2, x + "a"),(0, 0, 0),(x + 3, x + 4, x + "c")|`

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 84]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 53 | Page 84

RELATED QUESTIONS

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`


 

Using properties of determinants, prove that 

`|[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|`

 

Using the property of determinants and without expanding, prove that:

`|(2,7,65),(3,8,75),(5,9,86)| = 0`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


Using properties of determinants, prove that:

`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| =  1`                 


Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`


Using properties of determinants, prove the following :

\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( 1 - a^3 \right)^2\].

Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Select the correct option from the given alternatives:

`|("b" + "c", "c" + "a", "a" + "b"),("q" + "r", "r" + "p", "p" + "q"),(y + z, z + x, x + y)|` = 


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Evaluate: `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.


If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:


If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.


Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×