English

Using Properties of Determinants, Prove That: |A^2 + 1, Ab, Ac Ba, B^2 + 1, Bc Ca, Cb, C^2+1| = A^2 + B^2 + C^2 + 1 - Mathematics

Advertisements
Advertisements

Question

Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`

Sum

Solution

L.H.S.  Δ = `|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| `

Operating `R_1 → (1)/(a) R_1,R_2 → (1)/(b) R_2 and R_3 → 1/c R_3  "we  have"`

Δ = abc `|[a+ (1)/(a), b, c], [a , b +(1)/(b), c], [a , b , c + (1)/(c)]|`

Multiplying C1 by a, C2 by b and C3 by c, we have

Δ = `|[ a^2+1, -b^2 , c^2], [ a^2, b^2+1, c^2], [a^2, b^2, c^2+1]|`

Operating C1 → C1 + C2+C3, we have

Δ = `|[ 1+a^2 +b^2+c^2, b^2, c^2],[1+a^2 +b^2+c^2 , b^2+1, c^2],[1+a^2 +b^2+c^2, b^2, c^2+1]|`

Δ = `(1 + a^2 + b^2+c^2) |[ 1, b^2, c^2],[1, b^2+1, c^2], [1, b^2, c^2+1]|` 

Operating R2 → R2 → R1 and R3 → R3 → R1, we have

Δ = `(1 + a^2 + b^2+c^2) |(1,b^2,c^2),(0,1,0),(0,0,1)|`

Expanding along C, we have

Δ = `(1 + a^2 + b^2+c^2) |[1, 0],[0,1]|`

   = `a^2  +b^2+c^2 +1 = R.H.S.`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

 

If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).

 

By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


By using properties of determinants, show that:

`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`


Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`


Using properties of determinants, prove that:

`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2 


Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


Prove that: `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is


A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


Which of the following is correct?


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Without expanding evaluate the following determinant.

`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×