हिंदी

Using Properties of Determinants, Prove That: |A^2 + 1, Ab, Ac Ba, B^2 + 1, Bc Ca, Cb, C^2+1| = A^2 + B^2 + C^2 + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`

योग

उत्तर

L.H.S.  Δ = `|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| `

Operating `R_1 → (1)/(a) R_1,R_2 → (1)/(b) R_2 and R_3 → 1/c R_3  "we  have"`

Δ = abc `|[a+ (1)/(a), b, c], [a , b +(1)/(b), c], [a , b , c + (1)/(c)]|`

Multiplying C1 by a, C2 by b and C3 by c, we have

Δ = `|[ a^2+1, -b^2 , c^2], [ a^2, b^2+1, c^2], [a^2, b^2, c^2+1]|`

Operating C1 → C1 + C2+C3, we have

Δ = `|[ 1+a^2 +b^2+c^2, b^2, c^2],[1+a^2 +b^2+c^2 , b^2+1, c^2],[1+a^2 +b^2+c^2, b^2, c^2+1]|`

Δ = `(1 + a^2 + b^2+c^2) |[ 1, b^2, c^2],[1, b^2+1, c^2], [1, b^2, c^2+1]|` 

Operating R2 → R2 → R1 and R3 → R3 → R1, we have

Δ = `(1 + a^2 + b^2+c^2) |(1,b^2,c^2),(0,1,0),(0,0,1)|`

Expanding along C, we have

Δ = `(1 + a^2 + b^2+c^2) |[1, 0],[0,1]|`

   = `a^2  +b^2+c^2 +1 = R.H.S.`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्न

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using properties of determinants, prove that

`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`

 


 

If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).

 

Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants, prove that:

`|(3a, -a+b, -a+c),(-b+a, 3b, -b+c),(-c+a, -c+b, 3c)|`= 3(a + b + c) (ab + bc + ca)


Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Using properties of determinants, prove the following:

`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Answer the following question:

Without expanding determinant show that

`|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.


The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


In a third order matrix B, bij denotes the element in the ith row and jth column. If

bij = 0 for i = j

= 1 for > j

= – 1 for i < j

Then the matrix is


Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Evaluate the following determinant without expanding:

`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


By using properties of determinants, prove that 

`|(x+y, y+z, z+x),(z, x, y),(1, 1, 1)|` = 0 


Without expanding evaluate the following determinant.

`|(1,"a","b+c"),(1,"b","c+a"),(1,"c","a+b")|`


Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×