हिंदी

The maximum value of Δ = |11111+sinθ11+cosθ11| is ______. (θ is real number) - Mathematics

Advertisements
Advertisements

प्रश्न

The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)

विकल्प

  • `1/2`

  • `sqrt(3)/2`

  • `sqrt(2)`

  • `(2sqrt(3))/4`

MCQ
रिक्त स्थान भरें

उत्तर

The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is `1/2`. (θ is real number)

Explanation:

Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|`

[Applying C1 → C1 – C1 and C2 → C2 – C3]

= `|(0, 0, 1),(0, sin theta, 1),(cos theta, 0, 1)|`

= – sin θ · cos θ

= `-1/2 * 2 sin theta cos theta`

= `- 1/2 sin 2theta`

So, maximum value of Δ is `1/2` when sin 2θ = –1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ८१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 31 | पृष्ठ ८१

संबंधित प्रश्न

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using the properties of determinants, prove the following:

`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Using properties of determinants, prove that:

`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| =  1`                 


Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Using properties of determinants, prove the following:

`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),`  then the value of x is ____________.


If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.


By using properties of determinant prove that

`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0 


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×