Advertisements
Advertisements
Question
If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then
Options
k = –3
k = –1
k = 1
k = 3
Solution
k = – 1
Explanation:
L.H.S →
`|(x^k, x^(k + 2), x^(k + 3)),(y^k, y^(k + 2), y^(k + 3)),(z^k, z^(k + 2), z^(k + 3))| = x^k y^k z^k |(1, x^2, x^3),(1, y^2, y^3),(1, z^2, z^3)|`
= (xyz)k(x – y) (y – z) (z – x) (xy + yz + zx)
R.H.S. →
= `(x - y) (y - z) (z - x) (1/x+ 1/y + 1/z)`
= `(x - y) (y - z) (z - x) ((xy + yz + zx)/(xyz))`
L.H.S. = R.H.S.
∴ `(xyz)^k (x - y) (y - z) (z - x) (xy + yz + zx) = (x - y) (y - z) (z - x) ((xy + yz + zx)/(xyz))`
∴ `(xyz)^k cancel((x - y)) cancel((y - z)) cancel((z - x)) (xy + yz + zx) = cancel((x - y)) cancel((y - z)) cancel((z - x)) ((xy + yz + zx)/(xyz))`
∴ `(xyz)^k cancel((xy + yz + zx)) = cancel((xy + yz + zx))/(xyz)`
∴ (xyz)k = `1/"xyz"`
∴ (xyz)k = xyz- 1
∴ k = – 1
APPEARS IN
RELATED QUESTIONS
Using the property of determinants and without expanding, prove that:
`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`
Using the property of determinants and without expanding, prove that:
`|(2,7,65),(3,8,75),(5,9,86)| = 0`
By using properties of determinants, show that:
`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`
By using properties of determinants, show that:
`|(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a - b)(b-c)(c-a)`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`
Using properties of determinants, prove that:
`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| = 1`
Prove the following using properties of determinants :
\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]
Using properties of determinants, prove the following:
Using properties of determinants, prove that:
`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2
Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Solve the following equation:
`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0
Answer the following question:
Without expanding determinant show that
`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0
The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4 x ≤ pi/4` is ______.
The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)
The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.
If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.
Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.
If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is
`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?
The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are
Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:
Which of the following is correct?
If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.
By using properties of determinant prove that `|(x + y, y+z, z +x),(z,x,y),(1,1,1)| =0`
By using properties of determinant prove that
`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0
Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Evaluate the following determinant without expanding:
`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`
Without expanding determinants, find the value of `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`
if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?