Advertisements
Advertisements
Question
Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0
Solution
We have, `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0
Expanding along C3, we get
`sin 3theta xx (28 - 21) - cos 2theta xx (7 - 7) - 2(3 + 4)` = 0
⇒ `7 sin 3theta + 14 cos 2theta - 14` = 0
⇒ `sin 3theta + 2 cos 2theta - 2` = 0
⇒ `(3 sin theta - 4 sin^3 theta) + 2(1 - 2 sin^2 theta) - 2` = 0
⇒ `4 sin^3 theta - 4 sin^2 theta + 3 sin theta` = 0
⇒ `sin theta(4 sin^2 theta - 4 sin theta + 3)` = 0
⇒ `sin theta(4 sin^2 theta - 6 sin theta + 2 sin theta + 3)` = 0
⇒ `sin theta (2 sin theta + 1)(2 sin theta - 3)` = 0
⇒ sin θ or sin θ = `(-1)/2` or sin θ = `3/2`
⇒ θ = `"n"pi` or θ = `"m"pi + (-1)^"n" (-pi/6); "m", "n" ∈ "Z"`
sin θ = `(-3)/2` is not possible.
APPEARS IN
RELATED QUESTIONS
By using properties of determinants, show that:
`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`
By using properties of determinants, show that:
`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)
By using properties of determinants, show that:
`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`
By using properties of determinants, show that:
`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`
By using properties of determinants, show that:
`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`
Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`
Using properties of determinants, prove that
`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`
Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants.
Solve the following equation: `|(x + 2, x + 6, x - 1),(x + 6, x - 1,x + 2),(x - 1, x + 2, x + 6)|` = 0
If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.
Select the correct option from the given alternatives:
If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________
If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),` then the value of x is ____________.
Let P be any non-empty set containing p elements. Then, what is the number of relations on P?
If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is
In a third order matrix B, bij denotes the element in the ith row and jth column. If
bij = 0 for i = j
= 1 for > j
= – 1 for i < j
Then the matrix is
`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?
A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:
If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.