Advertisements
Advertisements
Question
Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Solution
L.H.S. = `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|`
Taking bc, ca, ab common from R1, R2, R3 respectively, we get
L.H.S. = `("bc")("ca")("ab")|(("b" - "c")/"bc" , 1, "bc"),(("c" + "a")/"ca", 1, "ca"),(("a" + "b")/"ab", 1, "ab")|`
Taking abc common from C3, we get
L.H.S. = `("a"^2"b"^2"c"^2)("abc") |(1/"c" + 1/"b", 1, 1/"a"),(1/"a" + 1/"c", 1, 1/"b"),(1/"b" + 1/"a", 1, 1/"c")|`
Applying C1 → C1 + C3, we get
L.H.S. = `"a"^3"b"^3"c"^3|(1/"a" + 1/"b" + 1/"c", 1, 1/"a"),(1/"a" + 1/"b"+ 1/"c", 1, 1/"b"),(1/"a" + 1/"b" + 1/"c", 1, 1/"c")|`
Taking `(1/"a" + 1/"b" + 1/"c")` common from C1, we get
L.H.S. = `"a"^3"b"^3"c"^3 (1/"a" + 1/"b" + 1/"c")|(1, 1, 1/"a"),(1, 1, 1/"b"),(1, 1, 1/"c")|`
= `"a"^3"b"^3"c"^3 (1/"a" + 1/"b" + 1/"c")(0)` ...[C1 and C2 are identical]
= 0
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Using properties of determinants, prove the following :
Using properties of determinants, prove that:
`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2
Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants.
Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
Select the correct option from the given alternatives:
The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when
Answer the following question:
Without expanding determinant show that
`|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`
If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.
The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________
The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.
Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.
Let a, b, c be such that b(a + c) ≠ 0 if
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
Without expanding determinants, find the value of `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`
Without expanding evaluate the following determinant.
`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`