मराठी

Using Properties of Determinants Show that ⎡ ⎢ ⎣ 1 1 1 + X 1 1 + Y 1 1 + Z 1 1 ⎤ ⎥ ⎦ = X Y Z + Y Z + Z X + X Y . - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`

उत्तर

To prove:  `[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`

LHS: Let   `Δ = [[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`

Take x, y and z common from C3, Cand C1 respectively.

Therefore, Δ = xyz `[[1/z,1/y,1/x+1],[1/z,1/y+1,1/x],[1/z+1,1/y,1/x]]`

`C_3 → C_3+C+C_1`

`Δ = xyz [[1/z,1/y,1+1/x+1/y+1/z],[1/z,1/y+1,1+1/x+1/y+1/x],[1/x+1,1/y,1+1/x+1/y+1/z]]`

Taking `1+1/x+1/y+1/z` common

`Δ = xyz (1+1/x+1/y+1/z) [[1/z,1/y,1],[1/z,1/y+1,1],[1/z+1,1/y,1]]`

Applying `R_2 → R_2-R_1,R_3 →R_3-R_1`

`Δ = xyz (1+1/x+1/y+1/z)[[1/z,1/y,1],[0,1,0],[1,0,0]]`

On expanding we get` Δ = xyz (1+1/x+1/y+1/z) = xyz+ yz +zx+xy` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

संबंधित प्रश्‍न

Using the properties of determinants, prove the following:

`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`


Using properties of determinants, prove that

`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants, prove that:

`|(3a, -a+b, -a+c),(-b+a, 3b, -b+c),(-c+a, -c+b, 3c)|`= 3(a + b + c) (ab + bc + ca)


Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


`abs(("x", -7),("x", 5"x" + 1))`


The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.


If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


The value of the determinant `|(6, 0, -1),(2, 1, 4),(1, 1, 3)|` is ______.


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`


The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×