Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives:
The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if
पर्याय
a, b, c are in A.P.
a, b, c are in G.P
a, b, c are in H.P.
α is root of ax2 + 2bx + c = 0
उत्तर
a, b, c are in G.P.
Explanation:
Applying R3 → R3 – (R1 + R2), we get
`|("a", "b", "a" + "b"),("b", "c", "b" + "c"),(0, 0, -("a" + 2"b" + "c"))|` = 0
∴ a[–c(a + 2b + c) – 0] – b[–b(a + 2b + c) – 0] + (a + b) (0 – 0) = 0
∴ (–ac + b2) (a + 2b + c) = 0
∴ –ac + b2 = 0 or a + 2b + c = 0
∴ b2 = ac
∴ a, b, c are in G.P.
APPEARS IN
संबंधित प्रश्न
Using the property of determinants and without expanding, prove that:
`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`
By using properties of determinants, show that:
`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`
By using properties of determinants, show that:
`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Using properties of determinants, prove that:
`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Evaluate the following determinants:
`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`
Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
If `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.
Select the correct option from the given alternatives:
The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is
Select the correct option from the given alternatives:
The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when
Answer the following question:
Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties
Answer the following question:
Without expanding determinant show that
`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`
Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.
The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4 x ≤ pi/4` is ______.
If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.
`abs(("x", -7),("x", 5"x" + 1))`
The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.
Let P be any non-empty set containing p elements. Then, what is the number of relations on P?
The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.
If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`
By using properties of determinant prove that
`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`
if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?
The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?
Without expanding determinant find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`
Without expanding evaluate the following determinant.
`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`