मराठी

Evaluate: |3x-x+y-x+zx-y3yz-yx-zy-z3z| - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`

बेरीज

उत्तर

We have, `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`

[Applying C1 → C1 + C2 + C3]

= `|(x + y + z, -x + y, -x + z),(x + y + z, 3y, z - y),(x + y + z, y - z, 3z)|`

[Taking (x + y + z) common from colmn C1]

= `(x + y + z)|(1, -x + y, -x + z),(1, 3y, z - y),(1, y - z, 3z)|`

[Applying R1 → R2 – R1 and R3 → R3 – R1]

= `(x + y + z)|(1, -x + y, -x + z),(0, 2y + x, x - y),(0, x - z, 2z + x)|`

[Applying C2 → C2 – C3]

= `(x + y + z)|(1, -x + y, -x + z),(0, 3y, x - y),(0, -3z, 2z + x)|`

[Expanding along first column]

= `(x + y + z) * 1[3y(2z + x) + (3z)(x - y)]`

= (x + y + z)(3yz + 3yx + 3xz)

= 3(x + y + z)(xy + yz + zx)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise [पृष्ठ ७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 4 Determinants
Exercise | Q 4 | पृष्ठ ७७

संबंधित प्रश्‍न

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using properties of determinants, prove that

`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`

 


Using the property of determinants and without expanding, prove that:

`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`


By using properties of determinants, show that:

`|(x+4,2x,2x),(2x,x+4,2x),(2x , 2x, x+4)| = (5x + 4)(4-x)^2`


By using properties of determinants, show that:

`|(x+y+2z, x, y),(z, y+z+2z,y),(z,x,z+x+2y)| = 2(x+y+z)^3`


Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`


Using propertiesof determinants prove that:
`|(x , x(x^2), x+1), (y, y(y^2 + 1), y+1),( z, z(z^2 + 1) , z+1) | = (x-y) (y - z)(z - x)(x + y+ z)`


Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.


Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" +  "b", "ab", "a"^2"b"^2)|` = 0


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Prove that `|(x + y, y + z, z + x),(z + x, x + y, y + z),(y + z, z + x, x + y)| = 2|(x, y, z),(z, x, y),(y, z, x)|`


Using properties of determinant show that

`|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc


Solve the following equation: 

`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Answer the following question:

By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding evaluate the following determinant.

`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×