मराठी

Using properties of determinants, prove that |((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3 - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that

`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`

 

उत्तर

`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`

L.H.S.

Multipiying R1, R2 and R3 by z, x, y respectively

`=1/(xyz)|(z(x+y)^2,z^2x,z^2y),(x^2z,x(z+y)^2,x^2y),(y^2z,xy^2,y(z+x)^2)|`

take common z, x, y from C1, C2, & C3

`=(xyz)/(xyz)|((x+y)^2,z^2,z^2),(x^2,(z+y)^2,x^2),(y^2,y^2,(z+x)^2)|`

C1 → C1 - C3 and C2  C2 - C3

taking common x+y+z from C1 & C2

`=(x+y+z)^2|((x+y+z),0,z^2),(0,z+y-x,x^2),(y-z-x,y-z-x,(z+x)^2)|`

R3 → R3 - (R1 + R2)

`=(x+y+z)^2|(x+y+z,0,z^2),(0,z+y-x,x^2),(-2x,-2zx,2xz)|`

C1 → zC1, C2 → xC3

`=(x+y+z)^2/(xz)=|(z(x+y-z),0,z^2),(0,x(z+y-x),x^2),(-2xz,-2zx,2xz)|`

C1 → C1 + C3   C2 → C2 + C3

 

 

`=(x+y+x^2)/(xz)|(z(x+y),z^2,z^2),(x^2,x(z+y),x^2),(0,0,2xz)|`

taking z and x common from R1 & R2

`=(x+y+x)^2/(xz)xxzx|(x+y,z,z),(x,z+y,x),(0,0,2xz)|`

expansion along R3

= (x+y+z)2 × 2xz ((x + y) (z + y) – xz)

= (x+y+z)2 × 2xz (xz + xy + yz + y2 - xz)

= (x+y+z)2 × 2xz (xy + yz + y2)

= 2xyz (x + y + z)3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 N

संबंधित प्रश्‍न

By using properties of determinants, show that:

`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`


Using properties of determinants, prove that

`|[b+c , a ,a  ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc 


 Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Prove that `|(x + y, y + z, z + x),(z + x, x + y, y + z),(y + z, z + x, x + y)| = 2|(x, y, z),(z, x, y),(y, z, x)|`


Using properties of determinant show that

`|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` = 0


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Answer the following question:

By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0


Answer the following question:

If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


In a third order matrix B, bij denotes the element in the ith row and jth column. If

bij = 0 for i = j

= 1 for > j

= – 1 for i < j

Then the matrix is


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×