Advertisements
Advertisements
Question
Using properties of determinants, prove that
`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`
Solution
`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`
L.H.S.
Multipiying R1, R2 and R3 by z, x, y respectively
`=1/(xyz)|(z(x+y)^2,z^2x,z^2y),(x^2z,x(z+y)^2,x^2y),(y^2z,xy^2,y(z+x)^2)|`
take common z, x, y from C1, C2, & C3
`=(xyz)/(xyz)|((x+y)^2,z^2,z^2),(x^2,(z+y)^2,x^2),(y^2,y^2,(z+x)^2)|`
C1 → C1 - C3 and C2 C2 - C3
taking common x+y+z from C1 & C2
`=(x+y+z)^2|((x+y+z),0,z^2),(0,z+y-x,x^2),(y-z-x,y-z-x,(z+x)^2)|`
R3 → R3 - (R1 + R2)
`=(x+y+z)^2|(x+y+z,0,z^2),(0,z+y-x,x^2),(-2x,-2zx,2xz)|`
C1 → zC1, C2 → xC3
`=(x+y+z)^2/(xz)=|(z(x+y-z),0,z^2),(0,x(z+y-x),x^2),(-2xz,-2zx,2xz)|`
C1 → C1 + C3 C2 → C2 + C3
`=(x+y+x^2)/(xz)|(z(x+y),z^2,z^2),(x^2,x(z+y),x^2),(0,0,2xz)|`
taking z and x common from R1 & R2
`=(x+y+x)^2/(xz)xxzx|(x+y,z,z),(x,z+y,x),(0,0,2xz)|`
expansion along R3
= (x+y+z)2 × 2xz ((x + y) (z + y) – xz)
= (x+y+z)2 × 2xz (xz + xy + yz + y2 - xz)
= (x+y+z)2 × 2xz (xy + yz + y2)
= 2xyz (x + y + z)3
APPEARS IN
RELATED QUESTIONS
By using properties of determinants, show that:
`|(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a - b)(b-c)(c-a)`
By using properties of determinants, show that:
`|(x+4,2x,2x),(2x,x+4,2x),(2x , 2x, x+4)| = (5x + 4)(4-x)^2`
Using properties of determinants, prove that
`|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)| = (a - 1)^3`
Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`
Using properties of determinants, prove that:
`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`
Using properties of determinants show that
`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`
Using properties of determinants, prove the following :
Prove the following using properties of determinants :
\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]
Using properties of determinants, prove the following:
Using properties of determinants, prove the following:
`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.
Evaluate the following determinants:
`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`
By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.
If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then
Select the correct option from the given alternatives:
Which of the following is correct
Answer the following question:
Without expanding determinant show that
`|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.
Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.
If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.
The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________
A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is
The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are
In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.
If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0
Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`