English

If A=((1,0,2),(0,2,1),(2,0,3)) and A3 - 6A2 +7A + kI3 = O find k. - Mathematics

Advertisements
Advertisements

Question

If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.

Solution

`A=[(1,0,2),(0,2,1),(2,0,3)]`

`A^2="AA" = [(1,0,2),(0,2,1),(2,0,3)][(1,0,2),(0,2,1),(2,0,3)]`

`=[(5,0,8),(2,4,5),(8,0,13)]`

`A^3=A^2.A=[(5,0,8),(2,4,5),(8,0,13)][(1,0,2),(0,2,1),(2,0,3)]`

`=[(21,0,34),(12,8,23),(34,0,55)]`

∴ A3 - 6A2 + 7A + KI3 = 0

`=>[(21,0,34),(12,8,23),(34,0,55)]-6[(5,0,8),(2,4,5),(8,0,13)]+7[(1,0,2),(0,2,1),(2,0,3)]+k[(1,0,0),(0,1,0),(0,0,1)]=0`

⇒ k = 2

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`

then find (i) a22 + b21 (ii) a11 b11 + a22 b22

 

 


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=e^(2ix) sin (xj)`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`


Construct a 4 × 3 matrix whose elements are

 aij = 


Given an example of

 a triangular matrix


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×