Advertisements
Advertisements
Question
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
Solution
\[\left( A^n \right)^T = \lambda A^n \]
\[ \Rightarrow \left( A^T \right)^n = \lambda A^n \]
\[ \Rightarrow \left( - A \right)^n = \lambda A^n \]
\[ \Rightarrow \left( - 1 \right)^n A^n = \lambda A^n \]
\[ \Rightarrow \lambda = \left( - 1 \right)^n\]
APPEARS IN
RELATED QUESTIONS
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)= (2i +j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = 2i
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Given an example of
a triangular matrix
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then
If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.
Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and "C" = [(2, 0, -2),(7, 1, 6)]`.