English

Construct a 2 × 2 Matrix Whose Elements Aij Are Given By: `(I+J)^2/2` - Mathematics

Advertisements
Advertisements

Question

Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`

Sum

Solution

`(i+j)^2/2`

Here,

`a_11= (1+1)^1/2=(2)^2/2=4/2=2,  a_12=(1+2)^2/2=(3)^2/2=9/2` 

`a_12=(2+1)^2/2=(3)^2/2=9/2,  a_22=(2+2)^2/2=(4)^2/2=16/2=8`

So, the required matrix is =`[[2       9/2],[9/2         8]]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.1 | Q 5.1 | Page 7

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)= (2i +j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`


Given an example of

 a triangular matrix


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


Let and be matrices of orders 3 x 2 and 2 x 

4 respectively. Write the order of matrix AB. 


If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type 


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and  "C" = [(2, 0, -2),(7, 1, 6)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×