Advertisements
Advertisements
प्रश्न
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
उत्तर
`(i+j)^2/2`
Here,
`a_11= (1+1)^1/2=(2)^2/2=4/2=2, a_12=(1+2)^2/2=(3)^2/2=9/2`
`a_12=(2+1)^2/2=(3)^2/2=9/2, a_22=(2+2)^2/2=(4)^2/2=16/2=8`
So, the required matrix is =`[[2 9/2],[9/2 8]]`
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.
Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
`a_(ij)=1/2= -3i + j `
Construct a 4 × 3 matrix whose elements are
aij = i
Given an example of
a triangular matrix
The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.
If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then
If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type
If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\] then AT + A = I2, if
If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.