मराठी

Construct a 2 × 2 Matrix Whose Elements Aij Are Given By: `(I+J)^2/2` - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`

बेरीज

उत्तर

`(i+j)^2/2`

Here,

`a_11= (1+1)^1/2=(2)^2/2=4/2=2,  a_12=(1+2)^2/2=(3)^2/2=9/2` 

`a_12=(2+1)^2/2=(3)^2/2=9/2,  a_22=(2+2)^2/2=(4)^2/2=16/2=8`

So, the required matrix is =`[[2       9/2],[9/2         8]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.1 | Q 5.1 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`

then find (i) a22 + b21 (ii) a11 b11 + a22 b22

 

 


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|2_i - 3_i|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

 aij = 


Given an example of

 a triangular matrix


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


Let and be matrices of orders 3 x 2 and 2 x 

4 respectively. Write the order of matrix AB. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type 


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×