Advertisements
Advertisements
प्रश्न
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
उत्तर
\[\left( i \right)\]\[a_{22} + b_{21}\]\[\]
\[Here, \]
\[ a_{22} =4\text{ and }b _{21}= - 3 \]
\[ \Rightarrow a_{22} + b_{21} = 4 - 3 = 1\]
\[\left ( ii \right)\]
\[\]\[a_{11} b_{11} + a_{22} b_{22}\]
here
`a_11=2, b_11=2,a_22=4` and `b_22=4`\[ \Rightarrow a_{11} b_{11} + a_{22} b_{22} = 2 \times 2 + 4 \times 4\]
\[ \Rightarrow a_{11} b_{11} + a_{22} b_{22} = 4 + 16\]
\[ \Rightarrow a_{11} b_{11} + a_{22} b_{22} = 20\]
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = 2i
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
`a_(ij)=1/2= -3i + j `
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Construct a 4 × 3 matrix whose elements are
aij = i
The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.
If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\] , find x.
`If A = ([3 5] , [7 9])` is written as A = P + Q, where as A = p + Q , Where P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then