मराठी

Construct a 3 × 4 Matrix A = [Aij] Whose Elements Aij Are Given By: `A_(Ij)=1/2= -3i + J ` - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `

उत्तर

`a_(ij)=1/2= -3i + j `

Here,

`a_(11)= 1/2 `|`-3(1)+1` |`=1/2|-2|=1 ,`

`a_12=1/2`|`-3(1)+2`| `=1/2 | -1 | = 1/2 ,

`a_13=1/2|-3(1)+3| =1/2 | 0 | =0, `

`a_14= 1/2 | -3 (1)+ 4 | = 1/2`

`a_21 = 1/2 | -3 (2) + 1 | = 1/2 | -5 | = 5/2 `

`a_22=1/2 | -3 (2)+2|= 1/2 |-4|=2 ,`

`a_23=1/2|-3(2)+ 3 | =1/2 , `

`a_24= 1/2 | -3 (2)+ 4| = 1/2 |-2 |= 1`

`a_31= 1/2 | -3(3)+ 1 | = 1/2 |-8| =4 ,`

`a_32 = 1/2 | -3 (3)+ 2 | = 1/2 |-7| = 7/2,`

`a_33 = 1/2 | - 3 (3)+ 3|=1/2|-6|=3  and `

`a_34 = 1/2 | -3 (3)+ 4 | = 1/2 |5|=5/2 `

So, the required matrix is `[[1    1/2    0    1/2],[5/2    2    3/2    1],[4    7/2   3    5/2]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.1 | Q 6.5 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|2_i - 3_i|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`


Construct a 4 × 3 matrix whose elements are

 aij = 


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


Let and be matrices of orders 3 x 2 and 2 x 

4 respectively. Write the order of matrix AB. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type 


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×