English

The Cooperative Stores of a Particular School Has 10 Dozen Physics Books, 8 Dozen Chemistry Books and 5 Dozen Mathematics Books. - Mathematics

Advertisements
Advertisements

Question

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 
Sum

Solution

Stock of various types of books in the store is given by

 Physics     Chemistry     Mathematics

\[X = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\]

Selling price of various types of books in the store is given by

\[Y = \begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\begin{array}  \\Physics \\ Chemistry \\ Mathematics\end{array}\]  
\[\]

Total amount received by the store from selling all the items is given by

\[XY = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\]

\[ = \begin{bmatrix}\left( 120 \right)\left( 8 . 30 \right) + \left( 96 \right)\left( 3 . 45 \right) + \left( 60 \right)\left( 4 . 50 \right)\end{bmatrix}\]

\[ = \begin{bmatrix}996 + 331 . 20 + 270\end{bmatrix}\]

\[ = \begin{bmatrix}1597 . 20\end{bmatrix}\]

Required amount = Rs 1597.20

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 72 | Page 46

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.


If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 4 × 3 matrix whose elements are

`a_(ij)= (i-j)/(i+j )`


Construct a 4 × 3 matrix whose elements are

 aij = 


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

 

If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If the matrix AB is zero, then


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and  "C" = [(2, 0, -2),(7, 1, 6)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×