Advertisements
Advertisements
Question
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
Solution
The cost per contact
\[\left( in paise \right)\] is given by
\[A = \begin{bmatrix}40 \\ 100 \\ 50\end{bmatrix}\begin{array}"Telephone \\ Housecall \\ Letter\end{array}\]
The number of contacts of each type made in the two cities X and Y is given by
Telephone Housecall Letter
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix} \begin{array}"X \\ Y\end{array}\]
Total amount spent by the group in the two cities X and Y is given by
\[BA = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{bmatrix}40 \\ 100 \\ 50\end{bmatrix}\]
`=[[ 40000 + 50000 + 250000],[120000 + 100000 + 500000]]`
`=[[340000],[720000]]` \[\begin{matrix}X\\Y\end{matrix}\]
Thus,
Amount spent on X = Rs 3400
Amount spent on Y = Rs 7200
APPEARS IN
RELATED QUESTIONS
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
If A=then find λ, μ so that A2 = λA + μI
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[0,0],[4,0]]` find `A^16`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
write AB.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If A and B are square matrices of the same order, then (AB)′ = ______.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.