Advertisements
Advertisements
Question
If A=then find λ, μ so that A2 = λA + μI
Solution
\[Given: A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 + 3 & 6 + 6 \\ 2 + 2 & 3 + 4\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix}\]
\[\]
` A^2 = λA + µ I`
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \lambda\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix} + \mu\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda & 3\lambda \\ \lambda & 2\lambda\end{bmatrix} + \begin{bmatrix}\mu & 0 \\ 0 & \mu\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda + 0 \\ \lambda + 0 & 2\lambda + \mu\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda \\ \lambda & 2\lambda + \mu\end{bmatrix}\]
\[\]
The corresponding elements of two equal matrices are equal .
\[ \therefore 7 = 2\lambda + \mu . . . \left( 1 \right)\]
\[ 12 = 3\lambda\]
\[ \Rightarrow \lambda = \frac{12}{3} = 4\]
Putting the value of λ in eq . (1), we get
\[7 = 2\left( 4 \right) + \mu\]
\[ \Rightarrow 7 - 8 = \mu\]
\[\]
\[ \therefore \mu = - 1\]
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
If
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
If f (x) = x2 − 2x, find f (A), where A=
If `A=[[0,0],[4,0]]` find `A^16`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.