English

If a = [ 1 a 0 1 ] Then an (Where N ∈ N) Equals - Mathematics

Advertisements
Advertisements

Question

If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 

Options

  •  \[\begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\] 

  •  \[\begin{bmatrix}1 & n^2 a \\ 0 & 1\end{bmatrix}\] 

  • \[\begin{bmatrix}1 & na \\ 0 & 0\end{bmatrix}\] 

  •  \[\begin{bmatrix}n & na \\ 0 & n\end{bmatrix}\]

MCQ

Solution

  \[\begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\] 

\[Here, \] 

\[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\] 

\[ \Rightarrow A^2 = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix} = \begin{bmatrix}1 + 0 & a + a \\ 0 + 0 & 0 + 1\end{bmatrix} = \begin{bmatrix}1 & 2a \\ 0 & 1\end{bmatrix}\] 
\[ A^3 = A^2 \times A = \begin{bmatrix}1 & 2a \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix} = \begin{bmatrix}1 + 0 & a + 2a \\ 0 + 0 & 0 + 1\end{bmatrix} = \begin{bmatrix}1 & 3a \\ 0 & 1\end{bmatrix} \] 

This pattern is applicable for all natural numbers.

\[\therefore A^n = \begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 11 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A and B are two square matrices of the same order, then AB = BA.


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×