Advertisements
Advertisements
Question
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
Solution
Given:
\[A = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]\[A^2 = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}4 + 0 + 1 & 0 + 0 - 1 & 2 + 0 + 0 \\ 4 + 2 + 3 & 0 + 1 - 3 & 2 + 3 + 0 \\ 2 - 2 + 0 & 0 - 1 - 0 & 1 - 3 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix}\]
Now,
\[A^2 - 5A + 4I = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix} - 5\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix} + 4\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}5 - 10 + 4 & - 1 - 0 + 0 & 2 - 5 + 0 \\ 9 - 10 + 0 & - 2 - 5 + 4 & 5 - 15 + 0 \\ 0 - 5 + 0 & - 1 + 5 + 0 & - 2 - 0 + 4\end{bmatrix}\]
\[ = \begin{bmatrix}- 1 & - 1 & - 3 \\ - 1 & - 3 & - 10 \\ - 5 & 4 & 2\end{bmatrix}\]\
Now, A2 − 5A + 4I + X = 0
⇒ X = −(A2 − 5A + 4I)
∴ `X =[[ - 1 - 1 - 3] ,[- 1 - 3 - 10],[- 5 4 2]]`
`=[[1 1 3] ,[ 1 3 10], [ 5 -4 - 2]]`
APPEARS IN
RELATED QUESTIONS
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.