Advertisements
Advertisements
प्रश्न
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
उत्तर
Given:
\[A = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]\[A^2 = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}4 + 0 + 1 & 0 + 0 - 1 & 2 + 0 + 0 \\ 4 + 2 + 3 & 0 + 1 - 3 & 2 + 3 + 0 \\ 2 - 2 + 0 & 0 - 1 - 0 & 1 - 3 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix}\]
Now,
\[A^2 - 5A + 4I = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix} - 5\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix} + 4\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}5 - 10 + 4 & - 1 - 0 + 0 & 2 - 5 + 0 \\ 9 - 10 + 0 & - 2 - 5 + 4 & 5 - 15 + 0 \\ 0 - 5 + 0 & - 1 + 5 + 0 & - 2 - 0 + 4\end{bmatrix}\]
\[ = \begin{bmatrix}- 1 & - 1 & - 3 \\ - 1 & - 3 & - 10 \\ - 5 & 4 & 2\end{bmatrix}\]\
Now, A2 − 5A + 4I + X = 0
⇒ X = −(A2 − 5A + 4I)
∴ `X =[[ - 1 - 1 - 3] ,[- 1 - 3 - 10],[- 5 4 2]]`
`=[[1 1 3] ,[ 1 3 10], [ 5 -4 - 2]]`
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If A=, find k such that A2 = kA − 2I2
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
write AB.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money (in Rs.) collected by schools CVC and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?