हिंदी

Let `A =[[2,-3],[-7,5]]` and `B=[[1,0],[2,-4]]` Verify That (A − B)T = At − Bt - Mathematics

Advertisements
Advertisements

प्रश्न

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT

योग

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]

\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]

\[\]

\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]

\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[\left( iii \right) \left( A - B \right)^T = A^T - B^T \]

\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} - \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} - \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}2 - 1 & - 3 - 0 \\ - 7 - 2 & 5 + 4\end{bmatrix} \right)^T = \begin{bmatrix}2 - 1 & - 7 - 2 \\ - 3 - 0 & 5 + 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}1 & - 3 \\ - 9 & 9\end{bmatrix} \right)^T = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix} = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]

\[ \therefore LHS = RHS\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.4 | Q 1.3 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


If 

 


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

If A and B are square matrices of the same order, explain, why in general

(− B)2 ≠ A2 − 2AB + B2


The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A and B are square matrices of the same order, then (AB)′ = ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×