हिंदी

`P(X)=[[Cos X,Sin X],[-sin X,Cos X]],` Then Show that `P(X),P(Y)=P(X+Y)=P(Y)P(X).` - Mathematics

Advertisements
Advertisements

प्रश्न

 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`

योग

उत्तर

 Given :  \[P(x) = \begin{bmatrix}\ cosx & \ sinx \\ - \ sinx & \ cosx\end{bmatrix}\]

Then ,

\[P(y) = \begin{bmatrix}\ cosy & \ siny \\ - \ siny & \ cosy\end{bmatrix}\] 

Now,

\[P(x) P(y) = \begin{bmatrix}\ cosx & \ sinx \\ - \ sinx & \ cosx\end{bmatrix}\begin{bmatrix}\ cosy &  \ siny \\ - \ siny & \ cosy\end{bmatrix}\]
\[ = \begin{bmatrix}\ cosx\ cosy - \ sinx\ siny & \ cosx\ siny + \ sinx\ cosy \\ -  \ sinx\ cosy - \ cosx\ siny & - \ sinx\ siny + \ cosx\ cosy\end{bmatrix}\]
\[ = \begin{bmatrix}\cos\left( x + y \right) & \sin\left( x + y \right) \\ - \sin\left( x + y \right) & \cos\left( x + y \right)\end{bmatrix} . . . (1)\]

Also, 

\[P(x + y) = \begin{bmatrix}\cos\left( x + y \right) & \sin\left( x + y \right) \\ - \sin\left( x + y \right) & \cos\left( x + y \right)\end{bmatrix} . . . (2)\]

Now,

\[P(y) P(x) = \begin{bmatrix}\ cosy & \ siny \\ - \ siny & \ cosy\end{bmatrix}\begin{bmatrix}\ cosx & \ sinx \\ - \ sinx & \ cosx\end{bmatrix}\]
\[ = \begin{bmatrix}\ cosy\ cosx - \ siny\ sinx & \ cosy\ sinx + \ siny\ cosx \\ - \ siny \ cosx - \ cosy\ sinx & -  \ siny\ sinx + \ cosy\ cosx\end{bmatrix}\]
\[ = \begin{bmatrix}\cos\left( x + y \right) & \sin\left( x + y \right) \\ - \sin\left( x + y \right) & \cos\left( x + y \right)\end{bmatrix} . . . (3)\]

from (1),(2) and (3) ,we get

`p(x)   p(y)=p(x+y)=p(y)  p(x)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 54.1 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


If `A=[[0,0],[4,0]]` find `A^16`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×