हिंदी

If a is an M × N Matrix and B is N × P Matrix Does Ab Exist? If Yes, Write Its Order. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 
योग

उत्तर

Given: Order of A = \[m \times n\]
Order of B = \[n \times p\]
Since the number of columns in A are equal to the number of rows in B, i.e. n, AB exists.
Order of AB = Number of rows in A \[\times\] Number of columns in B
\[m \times p\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 1 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


Compute the products AB and BA whichever exists in each of the following cases:

`A=[[3     2],[-1     0],[-1      1]]` and `B= [[4         5        6],[0           1             2]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


If


Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


A square matrix where every element is unity is called an identity matrix.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×