Advertisements
Advertisements
प्रश्न
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
उत्तर
\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]
\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]
\[\]
\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]
\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[\left( ii \right) \left( A + B \right)^T = A^T + B^T \]
\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} + \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}2 + 1 & - 3 + 0 \\ - 7 + 2 & 5 - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 + 1 & - 7 + 2 \\ - 3 + 0 & 5 - 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}3 & - 3 \\ - 5 & 1\end{bmatrix} \right)^T = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix} = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]
\[ \therefore LHS = RHS\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If A=then find λ, μ so that A2 = λA + μI
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
If `A=[[0,0],[4,0]]` find `A^16`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
write AB.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
A square matrix where every element is unity is called an identity matrix.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.