हिंदी

If A Is a Square Matrix Such That A2 = A, Then (I + A)3 − 7a Is Equal To (A) A (B) I − A (C) I (D) 3a - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to

विकल्प

  • A

  • I-A

  • I

  • 3A

MCQ

उत्तर

I

\[Here, \]

\[ A^2 = A . . . \left( 1 \right)\]

\[ A^3 = A^2 A\]

\[ = A^2 \left[ \text{From eq }. \left( 1 \right) \right] \]

\[ = A \]

\[ \therefore A^3 = A . . . \left( 2 \right)\]

\[\text{We know that} \left( I + A \right)^3 = I^3 + 3 \left( I \right)^2 A + 3\left( I \right) A^2 + A^3 \]

\[ \Rightarrow \left( I + A \right)^3 = I + 3A + 3A + A \left[ \text{From eqs }. \left( 1 \right) and \left( 2 \right) \right] \]

\[ \Rightarrow \left( I + A \right)^3 = I + 7A\]

\[ \Rightarrow \left( I + A \right)^3 - 7A = I\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.7 | Q 16 | पृष्ठ ६७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If 

 


If A=then find λ, μ so that A2 = λA + μI

 

If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


Give examples of matrices
A and B such that AB ≠ BA


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×