Advertisements
Advertisements
प्रश्न
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
विकल्प
A
I-A
I
3A
उत्तर
I
\[Here, \]
\[ A^2 = A . . . \left( 1 \right)\]
\[ A^3 = A^2 A\]
\[ = A^2 \left[ \text{From eq }. \left( 1 \right) \right] \]
\[ = A \]
\[ \therefore A^3 = A . . . \left( 2 \right)\]
\[\text{We know that} \left( I + A \right)^3 = I^3 + 3 \left( I \right)^2 A + 3\left( I \right) A^2 + A^3 \]
\[ \Rightarrow \left( I + A \right)^3 = I + 3A + 3A + A \left[ \text{From eqs }. \left( 1 \right) and \left( 2 \right) \right] \]
\[ \Rightarrow \left( I + A \right)^3 = I + 7A\]
\[ \Rightarrow \left( I + A \right)^3 - 7A = I\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If
If A=then find λ, μ so that A2 = λA + μI
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Give examples of matrices
A and B such that AB ≠ BA
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.