Advertisements
Advertisements
प्रश्न
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
विकल्प
3
4
6
7
उत्तर
7
\[Here, \]
\[A = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^2 = A \times A\]
\[ \Rightarrow A^2 = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}\cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7} & \left( - 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} \right) \\ 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} & \cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7}\end{bmatrix}\]
`⇒ A^2 =[[cos (4π )/7 -sin (4π )/7 ] , [ sin (4π )/7 cos (4π)/7] ]` `[[∵ cos^2 θ - sin^2 θ = cos 2 θ ],[ 2 sin θ cos θ = sin θ ]]`
\[ \Rightarrow A^3 = A^2 \times A\]
\[ \Rightarrow A^3 = \begin{bmatrix}\cos\frac{4\pi}{7} & - \sin\frac{4\pi}{7} \\ \sin\frac{4\pi}{7} & \cos\frac{4\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}\left( \cos \frac{4\pi}{7}\cos\frac{2\pi}{7} - \sin\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} - \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} \right) \\ \left( \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \sin\frac{2\pi}{7}\sin\frac{4\pi}{7} + \cos\frac{4\pi}{7}\cos\frac{2\pi}{7} \right)\end{bmatrix}\]
`⇒ A^2 =[[cos (6π )/7 -sin (6π )/7 ] , [ sin (6π )/7 cos (6π)/7] ]` `[[∵ cos(A+B) = cos A cos B - sin A sin B ],[ sin (A+B) =sin A cos B + cos A sin B ]]`
Now we check if the pattern is same for k = 6.
Here,
\[A^6 = A^3 . A^3 \]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix}\]
Now, we check if the pattern is same for k = 7.
Here,
\[A^7 = A^6 \times A\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix} \begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{14\pi}{7} & - \sin\frac{14\pi}{7} \\ \sin \frac{14\pi}{7} & \cos \frac{14\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos 2\pi & - \sin2\pi \\ \sin 2\pi & \cos 2\pi\end{bmatrix} \left[ \because \frac{14\pi}{7} = 2\pi \right]\]
\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
So, the least positive integral value of k is 7.
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
What is the total number of 2 × 2 matrices with each entry 0 or 1?
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?