हिंदी

For the Following Matrices Verify the Associativity of Matrix Multiplication I.E. (Ab) C = A(Bc): `A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` And `C= [[1 2 -1],[3 0 1],[0 0 1]]` - Mathematics

Advertisements
Advertisements

प्रश्न

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 

योग

उत्तर

(AB)C=A(BC)

`⇒ ([[4     2       3],[1        1       2],[3        0        1]][[1        -1         1],[0           1               2],[2        -1          1]])` `[[1         2       -1],[3         0          1],[0        0          1]]=[[4       2        3],[1       1            2],[3       0         1]]` `([[1      -1       1],[0          1           2],[2        -1             1]] [[1      2       -1],[3        0           1],[0          0             1]])`

`⇒([[4+0+6         -4+2-3              4+4+3],[1+0+4           -1+1-2              1+2+2],[3+0+2                   -3+0-1             3+0+1]])`  `[[1     2      -1],[3        0          1],[0         0            1]]=[[4       2         3],[1         1         2],[3          0          1]]` `([[1-3+0       2-0+0        -1-1+1],[0+3+0       0+0+0            0+1+2],[2-3+0      4-0+0        -2-1+1]])`

⇒`[[10    -5        11],[5      -2       5],[5        -4     4]] [[1     2     -1],[3        0          1],[0        0      1]]=[[4        2       3],[1         1         2],[3      0      1]] [[-2         2      -1],[3       0       3],[-1         4        -2]]`

⇒`[[10-15+0     20-0+0      -10-5+11],[5-6+0       10-0+0          -5-2+5],[5-12+0        10-0+0                -5-4+4 ]]=[[-8+6-3        8+0+12        -4+6-6],[-2+3-2       2+0+8          -1+3-4],[-6+0-1     6+0+4         -3+0-2]]`

⇒`[[-5     20    -4],[-1     10      -2],[-7       10      -5]]`  =  `[[-5     20    -4],[-1     10      -2],[-7       10      -5]]`

∴ LHS=RHS 

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 16.2 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If AB = A and BA = B, where A and B are square matrices,  then


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×