हिंदी

Evaluate the Following: `[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`

योग

उत्तर

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`

`⇒[[1     -1],[0            2],[2           3]]` `[[1-0       0-1        2-2],[2-1          0-0          1-2]]`

`⇒[[1     -1],[0            2],[2           3]]` `[[1      -1                    0],[1             0              -1]]`

`⇒[[1-1       -1+0          0+1],[0+2           0+0                  0-2],[2+3           -2+0            0-3]]`

`⇒[[0    -1              1],[2           0           -2],[5       -2        -3]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 5.3 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A=[[3     2],[-1     0],[-1      1]]` and `B= [[4         5        6],[0           1             2]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If A=, find k such that A2 = kA − 2I2

 

If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


A matrix which is not a square matrix is called a ______ matrix.


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×