हिंदी

If A = [-3-2-4212213], B = [120-2-1-20-11] then find AB and use it to solve the following system of equations: x – 2y = 3 2x – y – z = 2 –2y + z = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = [-3-2-4212213], B = [120-2-1-20-11] then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3

योग

उत्तर

Given, A = [-3-2-4212213]

and B = [120-2-1-20-11]

Now, AB = [-3-2-4212213][120-2-1-20-11]

= [-3+4+0-6+2+40+4-42-2+04-1-20-2+22-2+04-1-30-2+3]

= [100010001]

∴ AB = I

(AB)B–1 = IB–1

A = B–1  ...(i)

Now, equations are

x – 2y = 3

2x – y – z = 2

– 2y + z = 3

[1-202-1-10-21][xyz]=[323]

CX = D

Here, C = BT  ...(ii)

∴  C–1(CX) = C–1 D

IX = C–1

X = C–1 D

= [BT]–1 D  ...[From (ii)]

= [B–1]T

= [A]T D  ...[From (i)]

X = [-3-2-4212213]T[323]

X = [-322-211-423][323]

= [-9+4+6-6+2+3-12+4+9]

[xyz]=[1-11]

Hence x = 1, y = – 1 and z = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product:

[ab-ba][a-bba]


Compute the products AB and BA whichever exists in each of the following cases:

A=[3   2-1   0-1   1] and B=[4     5    60      1       2]


Show that AB ≠ BA in each of the following cases:

A=[13-12-1-130-1] And B=[-23-1-12-1-69-4]

 


If A = [2    -13       2]  and B = [0     4-1     7]find 3A2 − 2B + I


If A =[2   -3     -5-1       4      51      -3    -4] and B =[2     -2      -4-1        3         41      2      -3]

, show that AB = A and BA = B.

 

Compute the elements a43 and a22 of the matrix:A=[0   1    02   0    20    3    24    0    4] [2    -1-3      24       3] [0      1      -1          2           -23    -3       4     -4         0]

 


A=[3242]and I =[1001],  then prove that A2 − A + 2I = O.


If


IfA=[1221] f (x) = x2 − 2x − 3, show that f (A) = 0


If f (x) = x3 + 4x2 − x, find f (A), whereA=[012230110]


IfA=[ab01], prove thatAn=[anb(an1)/a101] for every positive integer n .


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


If A and B are square matrices of the same order, explain, why in general

(− B)2 ≠ A2 − 2AB + B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


Let  A=[2-3-75] And B=[102-4] verify that 

 (A + B)T = AT BT


 For two matrices A and B,   A=[213410],B=[110250](AB)T = BT AT.

 


If the matrix A=[52xyz34t7]  is a symmetric matrix, find xyz and t.
 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If  A=[12x010001]andB=[12y010001] and AB = I3, then x + y equals 


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If A = [39018-2754] and B =[402714226] , then find the matrix BA .


If X = [31-15-2-3] and Y = [21-1724], find 2X – 3Y


If X = [31-15-2-3] and Y = [21-1724], find A matrix Z such that X + Y + Z is a zero matrix


If A =[1334] and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.